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neighboring vertex with improved objective value.
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Open Question: Does there exist a polynomial pivot rule for the Simplex method?

Combinatorial Diameter: The maximum number of steps needed to connect any pair of

vertices in a polyhedron by an edge walk.

� A lower bound on the best-case performance of the Simplex method.

Conjecture (Hirsch Conjecture, 1957)

The combinatorial diameter of a d-dimensional polyhedron with f facets is at most f − d.

� Disproved: 4-dimensional unbounded and 20-dimensional bounded counterexamples.

Conjecture (Borgwardt et al., Circuit Diameter Conjecture, 2016)

The circuit diameter of a d-dimensional polyhedron with f facets is at most f − d.
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consists of those g ∈ ker(A) \ {0} normalized to coprime integer components for which Bg

is support-minimal over the set {Bx : x ∈ ker(A) \ {0}}.
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Definition

The set of circuits of a polyhedron P = {x ∈ R
n : Ax = b,Bx ≤ d}, denoted C(A,B),

consists of those g ∈ ker(A) \ {0} normalized to coprime integer components for which Bg

is support-minimal over the set {Bx : x ∈ ker(A) \ {0}}.

Theorem (Graver, 1975)

The set of circuits C(A,B) consists of all potential edge directions of P as the right hand

side vectors b and d vary.

� Circuit walks: Generalization of edge walks in a polyhedron.

� Circuit diameter: Maximum number of steps needed to connect any pair of vertices in

a polyhedron via a circuit walk.
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Definition

Let P = {x ∈ R
n : Ax = b,Bx ≤ d} be a polyhedron. For two vertices v(1), v(2) of P, we call

a sequence v(1) = y(0), . . . , y(k) = v(2) a circuit walk of length k if for i = 0, . . . , k − 1:

1. y(i) ∈ P,

2. y(i+1) = y(i) + αig
(i) for some g(i) ∈ C(A,B) and αi > 0, and

3. y(i) + αg(i) is infeasible for all α > αi .

y(0)

y(2)

y(1)
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Combinatorial interpretations of circuit walks:

� Augmenting path algorithms for max-flow problems

� Cycle canceling algorithms for min-cost flow problems

� Cyclical shifts of commodity in transportation problems

� Clustering algorithms in partition polytopes

s1

s2

s3

c1

c2

c3
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We introduce and study a hierarchy of integral polyhedra based on the behavior of their

circuit walks.

� Integral polyhedron: Vertices have integer components.

In general, circuit walks in integral polyhedra need not be integral:

y(0)

y(2)

y(1)
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However, in certain integral polyhedra, all circuit walks are necessarily integral:

y(0)

y(1)

y(2)y(3)

y(4)

y(5)
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In more restrictive integral polyhedra, all circuit walks are vertex walks:

y(0) y(1)

y(2) y(3)

y(4)
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Finally, there exist integral polyhedra whose only circuit walks are edge walks:
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Integral Polyhedra

Integral Circuit Walks

Circuit Walks = Vertex Walks

Circuit Walks = Edge Walks

Goal: Determine where polyhedra from combinatorial optimization belong in this hierarchy.
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We treat two important classes of integral polyhedra:

� 0/1-polytopes
� Polyhedra defined by totally unimodular (TU) matrices

In general, 0/1-polytopes need not have integral circuit walks:

(0, 0, 0) (1, 0, 0)

(1, 1, 1)
(0, 0, 1)

(0, 1, 0)

� Matroid polytopes have many non-integral circuit walks.
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We say that P = {x ∈ R
n : Ax = b,Bx ≤ d} is defined by a TU matrix if the matrix M =

(

A
B

)

is totally unimodular.

� All subdeterminants of M belong to {0, 1,−1}.

� P is an integral polyhedron for any integral b,d.

Theorem (Onn, 2010)

A circuit g of P = {x ∈ R
n : Ax = b,Bx ≤ d} satisfies maxi |gi | ≤ ∆(M), where ∆(M)

denotes the maximum absolute subdeterminant of M =
(

A
B

)

.

So if M is TU, we must have g ∈ {0, 1,−1}n.

Theorem

All circuit walks in a polyhedron defined by a totally unimodular matrix are integral.
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Since all integral points in 0/1-polytopes are vertices...

Theorem

If P is a 0/1-polytope defined by a totally unimodular matrix, all circuit walks in P are vertex

walks.
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Since all integral points in 0/1-polytopes are vertices...

Theorem

If P is a 0/1-polytope defined by a totally unimodular matrix, all circuit walks in P are vertex

walks.

Example: Bounded-size partition polytope PP(κ±): a 0/1-polytope associated with the

partitioning of X = {x1, ..., xn} into k clusters C1, ...,Ck where κ
−

i ≤ |Ci | ≤ κ
+
i .

� Vertices correspond to feasible clustering assignments

� An edge joins two vertices if and only if their clusterings differ by a single sequential or

cyclic exchange of elements that satisfies restrictive cluster size constraints.

� A circuit step joins two vertices if and only if their clusterings differ by a single

sequential or cyclic exchange of elements.
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Integral Polyhedra

Integral Circuit Walks

Circuit Walks = Vertex Walks

Circuit Walks = Edge Walks

So far:

� Integral Polyhedron 6=⇒ Integral Circuit Walks

� TU Matrix =⇒ Integral Circuit Walks

� TU Matrix and 0/1-polytope =⇒ Vertex Walks

Polyhedra whose circuit walks are edge walks?
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Let P = {x ∈ R
n : Bx ≤ d} be a full-dimensional, non-degenerate polytope.

� Non-degenerate: each vertex v is contained in exactly n facets of P and is incident to

exactly n edges.

� Given two vertices u, v of P, let Puv denote the minimal face of P containing u, v, and

let Iuv (u), Iuv (v) denote the inner cones of u, v with respect to Puv .

Theorem (Symmetric Inner Cone Condition)

In a non-degenerate polytope, all circuit walks are edge walks if and only if for each pair of

vertices u, v, it holds that Iuv (u) = −Iuv (v).
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Theorem

In a non-degenerate polytope P, all circuit walks are edge walks if and only if P is a

simplex, a parallelotope, or a highly-symmetric polytope whose faces are constructed from

simplices and parallelotopes.
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Theorem

In a non-degenerate polytope P, all circuit walks are edge walks if and only if P is a

simplex, a parallelotope, or a highly-symmetric polytope whose faces are constructed from

simplices and parallelotopes.

� Only non-simplex, non-parallelotope example in R
3.
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Polyhedra whose circuit walks are edge walks do appear in practice:

Example: Fixed-size partition polytope PP(κ): associated with the partitioning of a set

X = {x1, ..., xn} into k clusters C1, ...,Ck in which |Ci | = κi for i = 1, ..., n.

� Both edges and circuits correspond to single cyclical exchanges of elements among

the clusters.

� All circuit walks are edge walks in PP(κ).

� PP(κ) is a highly degenerate polytope—its structure is not restricted to simplices and

parallelotopes.
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Integral Polyhedra

Integral Circuit Walks

Circuit Walks = Vertex Walks

Circuit Walks = Edge Walks

0/1-polytopes

Integral Polyhedra defined

by TU matrices

0/1-polytopes defined

by TU matrices

Simplices, Parallelotopes

Matroid Polytopes

Transportation Polytopes

Bounded-size Partition Polytopes

Fixed-size Partition Polytopes


